1,393 research outputs found

    Affine Combination of Two Adaptive Sparse Filters for Estimating Large Scale MIMO Channels

    Full text link
    Large scale multiple-input multiple-output (MIMO) system is considered one of promising technologies for realizing next-generation wireless communication system (5G) to increasing the degrees of freedom in space and enhancing the link reliability while considerably reducing the transmit power. However, large scale MIMO system design also poses a big challenge to traditional one-dimensional channel estimation techniques due to high complexity and curse of dimensionality problems which are caused by long delay spread as well as large number antenna. Since large scale MIMO channels often exhibit sparse or/and cluster-sparse structure, in this paper, we propose a simple affine combination of adaptive sparse channel estimation method for reducing complexity and exploiting channel sparsity in the large scale MIMO system. First, problem formulation and standard affine combination of adaptive least mean square (LMS) algorithm are introduced. Then we proposed an effective affine combination method with two sparse LMS filters and designed an approximate optimum affine combiner according to stochastic gradient search method as well. Later, to validate the proposed algorithm for estimating large scale MIMO channel, computer simulations are provided to confirm effectiveness of the proposed algorithm which can achieve better estimation performance than the conventional one as well as traditional method.Comment: 7 pages, 7 figure

    Sparse Channel Estimation for MIMO-OFDM Amplify-and-Forward Two-Way Relay Networks

    Full text link
    Accurate channel impulse response (CIR) is required for coherent detection and it can also help improve communication quality of service in next-generation wireless communication systems. One of the advanced systems is multi-input multi-output orthogonal frequency-division multiplexing (MIMO-OFDM) amplify and forward two-way relay networks (AF-TWRN). Linear channel estimation methods, e.g., least square (LS), have been proposed to estimate the CIR. However, these methods never take advantage of channel sparsity and then cause performance loss. In this paper, we propose a sparse channel estimation method to exploit the sparse structure information in the CIR at each end user. Sparse channel estimation problem is formulated as compressed sensing (CS) using sparse decomposition theory and the estimation process is implemented by LASSO algorithm. Computer simulation results are given to confirm the superiority of proposed method over the LS-based channel estimation method.Comment: 6 pages, 7 figures, conferenc

    Improved adaptive sparse channel estimation using mixed square/fourth error criterion

    Full text link
    Sparse channel estimation problem is one of challenge technical issues in stable broadband wireless communications. Based on square error criterion (SEC), adaptive sparse channel estimation (ASCE) methods, e.g., zero-attracting least mean square error (ZA-LMS) algorithm and reweighted ZA-LMS (RZA-LMS) algorithm, have been proposed to mitigate noise interferences as well as to exploit the inherent channel sparsity. However, the conventional SEC-ASCE methods are vulnerable to 1) random scaling of input training signal; and 2) imbalance between convergence speed and steady state mean square error (MSE) performance due to fixed step-size of gradient descend method. In this paper, a mixed square/fourth error criterion (SFEC) based improved ASCE methods are proposed to avoid aforementioned shortcomings. Specifically, the improved SFEC-ASCE methods are realized with zero-attracting least mean square/fourth error (ZA-LMS/F) algorithm and reweighted ZA-LMS/F (RZA-LMS/F) algorithm, respectively. Firstly, regularization parameters of the SFEC-ASCE methods are selected by means of Monte-Carlo simulations. Secondly, lower bounds of the SFEC-ASCE methods are derived and analyzed. Finally, simulation results are given to show that the proposed SFEC-ASCE methods achieve better estimation performance than the conventional SEC-ASCE methods. 1Comment: 21 pages, 10 figures, submitted for journa

    IMAC: Impulsive-mitigation adaptive sparse channel estimation based on Gaussian-mixture model

    Full text link
    Broadband frequency-selective fading channels usually have the inherent sparse nature. By exploiting the sparsity, adaptive sparse channel estimation (ASCE) methods, e.g., reweighted L1-norm least mean square (RL1-LMS), could bring a performance gain if additive noise satisfying Gaussian assumption. In real communication environments, however, channel estimation performance is often deteriorated by unexpected non-Gaussian noises which include conventional Gaussian noises and impulsive interferences. To design stable communication systems, hence, it is urgent to develop advanced channel estimation methods to remove the impulsive interference and to exploit channel sparsity simultaneously. In this paper, robust impulsive-mitigation adaptive sparse channel estimation (IMAC) method is proposed for solving aforementioned technical issues. Specifically, first of all, the non-Gaussian noise model is described by Gaussian mixture model (GMM). Secondly, cost function of reweighted L1-norm penalized least absolute error standard (RL1-LAE) algorithm is constructed. Then, RL1-LAE algorithm is derived for realizing IMAC method. Finally, representative simulation results are provided to corroborate the studies.Comment: 12 pages, 10 figures, submitted for journa

    From Group Sparse Coding to Rank Minimization: A Novel Denoising Model for Low-level Image Restoration

    Full text link
    Recently, low-rank matrix recovery theory has been emerging as a significant progress for various image processing problems. Meanwhile, the group sparse coding (GSC) theory has led to great successes in image restoration (IR) problem with each group contains low-rank property. In this paper, we propose a novel low-rank minimization based denoising model for IR tasks under the perspective of GSC, an important connection between our denoising model and rank minimization problem has been put forward. To overcome the bias problem caused by convex nuclear norm minimization (NNM) for rank approximation, a more generalized and flexible rank relaxation function is employed, namely weighted nonconvex relaxation. Accordingly, an efficient iteratively-reweighted algorithm is proposed to handle the resulting minimization problem combing with the popular L_(1/2) and L_(2/3) thresholding operators. Finally, our proposed denoising model is applied to IR problems via an alternating direction method of multipliers (ADMM) strategy. Typical IR experiments on image compressive sensing (CS), inpainting, deblurring and impulsive noise removal demonstrate that our proposed method can achieve significantly higher PSNR/FSIM values than many relevant state-of-the-art methods.Comment: Accepted by Signal Processin

    Least Mean Square/Fourth Algorithm with Application to Sparse Channel Estimation

    Full text link
    Broadband signal transmission over frequency-selective fading channel often requires accurate channel state information at receiver. One of the most attracting adaptive channel estimation methods is least mean square (LMS) algorithm. However, LMS-based method is often degraded by random scaling of input training signal. To improve the estimation performance, in this paper we apply the standard least mean square/fourth (LMS/F) algorithm to adaptive channel estimation (ACE). Since the broadband channel is often described by sparse channel model, such sparsity could be exploited as prior information. First, we propose an adaptive sparse channel estimation (ASCE) method using zero-attracting LMS/F (ZA-LMS/F) algorithm. To exploit the sparsity effectively, an improved channel estimation method is also proposed, using reweighted zero-attracting LMS/F (RZA-LMS/F) algorithm. We explain the reason why sparse LMS/F algorithms using l_1-norm sparse constraint function can improve the estimation performance by virtual of geometrical interpretation. In addition, for different channel sparsity, we propose a Monte Carlo method to select a regularization parameter for RA-LMS/F and RZA-LMS/F to achieve approximate optimal estimation performance. Finally, simulation results show that the proposed ASCE methods achieve better estimation performance than the conventional one.Comment: 5pages, 9figure

    Block Bayesian Sparse Learning Algorithms With Application to Estimating Channels in OFDM Systems

    Full text link
    Cluster-sparse channels often exist in frequencyselective fading broadband communication systems. The main reason is received scattered waveform exhibits cluster structure which is caused by a few reflectors near the receiver. Conventional sparse channel estimation methods have been proposed for general sparse channel model which without considering the potential cluster-sparse structure information. In this paper, we investigate the cluster-sparse channel estimation (CS-CE) problems in the state of the art orthogonal frequencydivision multiplexing (OFDM) systems. Novel Bayesian clustersparse channel estimation (BCS-CE) methods are proposed to exploit the cluster-sparse structure by using block sparse Bayesian learning (BSBL) algorithm. The proposed methods take advantage of the cluster correlation in training matrix so that they can improve estimation performance. In addition, different from our previous method using uniform block partition information, the proposed methods can work well when the prior block partition information of channels is unknown. Computer simulations show that the proposed method has a superior performance when compared with the previous methods.Comment: 5 pages, 6 figures, will be presented in WPMC2014@Sydney, Australi

    Adaptive Sparse Channel Estimation for Time-Variant MIMO-OFDM Systems

    Full text link
    Accurate channel state information (CSI) is required for coherent detection in time-variant multiple-input multipleoutput (MIMO) communication systems using orthogonal frequency division multiplexing (OFDM) modulation. One of low-complexity and stable adaptive channel estimation (ACE) approaches is the normalized least mean square (NLMS)-based ACE. However, it cannot exploit the inherent sparsity of MIMO channel which is characterized by a few dominant channel taps. In this paper, we propose two adaptive sparse channel estimation (ASCE) methods to take advantage of such sparse structure information for time-variant MIMO-OFDM systems. Unlike traditional NLMS-based method, two proposed methods are implemented by introducing sparse penalties to the cost function of NLMS algorithm. Computer simulations confirm obvious performance advantages of the proposed ASCEs over the traditional ACE.Comment: 6 cages,10 figures, conference pape

    Adaptive Sparse Channel Estimation for Time-Variant MISO Communication Systems

    Full text link
    Channel estimation problem is one of the key technical issues in time-variant multiple-input single-output (MSIO) communication systems. To estimate the MISO channel, least mean square (LMS) algorithm is applied to adaptive channel estimation (ACE). Since the MISO channel is often described by sparse channel model, such sparsity can be exploited and then estimation performance can be improved by adaptive sparse channel estimation (ASCE) methods using sparse LMS algorithms. However, conventional ASCE methods have two main drawbacks: 1) sensitive to random scale of training signal and 2) unstable in low signal-to-noise ratio (SNR) regime. To overcome these two harmful factors, in this paper, we propose a novel ASCE method using normalized LMS (NLMS) algorithm (ASCE-NLMS). In addition, we also proposed an improved ASCE method using normalized least mean fourth (NLMF) algorithm (ASCE-NLMF). Two proposed methods can exploit the channel sparsity effectively. Also, stability of the proposed methods is confirmed by mathematical derivation. Computer simulation results show that the proposed sparse channel estimation methods can achieve better estimation performance than conventional methods.Comment: 5 pages, 7 figures, 1 table, conferenc

    Improved Adaptive Sparse Channel Estimation Using Re-Weighted L1-norm Normalized Least Mean Fourth Algorithm

    Full text link
    In next-generation wireless communications systems, accurate sparse channel estimation (SCE) is required for coherent detection. This paper studies SCE in terms of adaptive filtering theory, which is often termed as adaptive channel estimation (ACE). Theoretically, estimation accuracy could be improved by either exploiting sparsity or adopting suitable error criterion. It motivates us to develop effective adaptive sparse channel estimation (ASCE) methods to improve estimation performance. In our previous research, two ASCE methods have been proposed by combining forth-order error criterion based normalized least mean fourth (NLMF) and L1-norm penalized functions, i.e., zero-attracting NLMF (ZA-NLMF) algorithm and reweighted ZA-NLMF (RZA-NLMF) algorithm. Motivated by compressive sensing theory, an improved ASCE method is proposed by using reweighted L1-norm NLMF (RL1-NLMF) algorithm where RL1 can exploit more sparsity information than ZA and RZA. Specifically, we construct the cost function of RL1-NLMF and hereafter derive its update equation. In addition, intuitive figure is also given to verify that RL1 is more efficient than conventional two sparsity constraints. Finally, simulation results are provided to confirm this study.Comment: 6 pages, 11 figures, conference pape
    • …
    corecore